Subspace classifier in the Hilbert space
نویسنده
چکیده
To improve the performance of the subspace classi er, it is e ective to reduce the dimensionality of the intersections between subspaces. For this purpose, the feature space is mapped implicitly to the in nite dimensional Hilbert space and the subspace classi er is applied in the Hilbert space.
منابع مشابه
Subspace classifier in reproducing kernel Hilbert space
To improve the performance of subspace classi er, it is e ective to reduce the dimensionality of the intersections between subspaces. For this purpose, the feature space is mapped implicitly to a high dimensional reproducing kernel Hilbert space and the subspace classi er is applied in this space. As a result of Hiragana recognition experiment, our classi er outperformed the conventional subspa...
متن کاملSOME PROPERTIES OF FUZZY HILBERT SPACES AND NORM OF OPERATORS
In the present paper we define the notion of fuzzy inner productand study the properties of the corresponding fuzzy norm. In particular, it isshown that the Cauchy-Schwarz inequality holds. Moreover, it is proved thatevery such fuzzy inner product space can be imbedded in a complete one andthat every subspace of a fuzzy Hilbert space has a complementary subspace.Finally, the notions of fuzzy bo...
متن کاملSubspace-diskcyclic sequences of linear operators
A sequence ${T_n}_{n=1}^{infty}$ of bounded linear operators on a separable infinite dimensional Hilbert space $mathcal{H}$ is called subspace-diskcyclic with respect to the closed subspace $Msubseteq mathcal{H},$ if there exists a vector $xin mathcal{H}$ such that the disk-scaled orbit ${alpha T_n x: nin mathbb{N}, alpha inmathbb{C}, | alpha | leq 1}cap M$ is dense in $M$. The goal of t...
متن کاملSemantic Concept Classification by Joint Semi-supervised Learning of Feature Subspaces and Support Vector Machines
The scarcity of labeled training data relative to the highdimensionality multi-modal features is one of the major obstacles for semantic concept classification of images and videos. Semi-supervised learning leverages the large amount of unlabeled data in developing effective classifiers. Feature subspace learning finds optimal feature subspaces for representing data and helping classification. ...
متن کاملHereditary Approximation Property
If X is a Banach space such that the isomorphism constant to `2 from n dimensional subspaces grows sufficiently slowly as n → ∞, then X has the approximation property. A consequence of this is that there is a Banach space X with a symmetric basis but not isomorphic to `2 so that all subspaces of X have the approximation property. This answers a problem raised in 1980 [8]. An application of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition Letters
دوره 20 شماره
صفحات -
تاریخ انتشار 1999